init🎉:
This commit is contained in:
161
train/trainers/ffd_sampler.py
Normal file
161
train/trainers/ffd_sampler.py
Normal file
@ -0,0 +1,161 @@
|
||||
from typing import Optional, List
|
||||
|
||||
import torch.distributed as dist
|
||||
from torch.utils.data import Sampler
|
||||
|
||||
import numpy as np
|
||||
import numba
|
||||
|
||||
|
||||
@numba.njit
|
||||
def ffd(a: np.ndarray, c: int):
|
||||
# First-fit-decreasing bin packing
|
||||
# https://en.wikipedia.org/wiki/First-fit-decreasing_bin_packing
|
||||
|
||||
a = np.sort(a)[::-1]
|
||||
bins = []
|
||||
for size in a:
|
||||
add_new = True
|
||||
for idx in range(len(bins)):
|
||||
if bins[idx] >= size:
|
||||
bins[idx] -= size
|
||||
add_new = False
|
||||
break
|
||||
|
||||
if add_new:
|
||||
bins.append(c - size)
|
||||
|
||||
return len(bins)
|
||||
|
||||
|
||||
@numba.njit
|
||||
def ffd_with_result(a: np.ndarray, c: int, start_index: int):
|
||||
# First-fit-decreasing bin packing (with result return)
|
||||
|
||||
indices = np.argsort(a)[::-1]
|
||||
a = a[indices]
|
||||
|
||||
bins = []
|
||||
bins_result = []
|
||||
for a_id, size in enumerate(a):
|
||||
add_new = True
|
||||
for idx in range(len(bins)):
|
||||
if bins[idx] >= size:
|
||||
bins[idx] -= size
|
||||
bins_result[idx].append(indices[a_id] + start_index)
|
||||
add_new = False
|
||||
break
|
||||
|
||||
if add_new:
|
||||
bins.append(c - size)
|
||||
bins_result.append([indices[a_id] + start_index])
|
||||
|
||||
return bins_result
|
||||
|
||||
|
||||
@numba.njit
|
||||
def allocate(lengths: np.ndarray, lengths_cumsum: np.ndarray, rank: int, c: int, n: int):
|
||||
# Dynamic batch allocator, similar to Multifit
|
||||
# https://en.wikipedia.org/wiki/Multifit_algorithm
|
||||
# ~96.4% efficiency on OpenChat training set (2048 ctx len)
|
||||
|
||||
s = 0
|
||||
start_index = 0
|
||||
result = []
|
||||
|
||||
while True:
|
||||
# binary search [l, r)
|
||||
l = 1
|
||||
r = 1 + np.searchsorted(lengths_cumsum[start_index:], s + c * n, "right")
|
||||
|
||||
while r - l > 1:
|
||||
m = (l + r) // 2
|
||||
if ffd(lengths[start_index: start_index + m], c) <= n:
|
||||
l = m
|
||||
else:
|
||||
r = m
|
||||
|
||||
# use length l
|
||||
batch = ffd_with_result(lengths[start_index: start_index + l], c, start_index)
|
||||
if len(batch) < n:
|
||||
break
|
||||
|
||||
start_index += l
|
||||
s = lengths_cumsum[start_index - 1]
|
||||
|
||||
# add local rank
|
||||
result.append(batch[rank])
|
||||
|
||||
return result, s / max(1, len(result) * c * n) # Avoid division by zero
|
||||
|
||||
|
||||
class FFDDistributedBatchSampler(Sampler):
|
||||
"""Unpadded length sampling using FFD (First-fit-decreasing bin packing).
|
||||
Approximate (at most ~1.22x) the optimal solution of the identical-machines scheduling problem, which is NP-hard."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
batch_max_length: int,
|
||||
lengths: List[int],
|
||||
num_replicas: Optional[int] = None,
|
||||
rank: Optional[int] = None,
|
||||
seed: int = 0,
|
||||
):
|
||||
# Get rank
|
||||
if num_replicas is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
num_replicas = dist.get_world_size()
|
||||
if rank is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
rank = dist.get_rank()
|
||||
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
self.seed = seed
|
||||
|
||||
self.batch_max_length = batch_max_length
|
||||
self.lengths = lengths
|
||||
assert isinstance(self.lengths, np.ndarray)
|
||||
|
||||
self.epoch = 0
|
||||
|
||||
# statistics
|
||||
self.total_epochs = 0
|
||||
self.total_efficiency = 0
|
||||
|
||||
def set_epoch(self, epoch: int):
|
||||
self.epoch = epoch
|
||||
|
||||
def generate_batches(self, set_stats=False):
|
||||
indices = np.random.default_rng(seed=self.seed + self.epoch).permutation(len(self.lengths))
|
||||
|
||||
lengths = self.lengths[indices]
|
||||
lengths_cumsum = np.cumsum(lengths)
|
||||
|
||||
batches, efficiency = allocate(lengths=lengths,
|
||||
lengths_cumsum=lengths_cumsum,
|
||||
rank=self.rank,
|
||||
c=self.batch_max_length,
|
||||
n=self.num_replicas)
|
||||
|
||||
batches = [indices[batch] for batch in batches]
|
||||
|
||||
# statistics
|
||||
if set_stats:
|
||||
self.total_epochs += 1
|
||||
self.total_efficiency += efficiency
|
||||
|
||||
return batches
|
||||
|
||||
def __iter__(self):
|
||||
batches = self.generate_batches(set_stats=True)
|
||||
return iter(batches)
|
||||
|
||||
def __len__(self):
|
||||
batches = self.generate_batches()
|
||||
return len(batches)
|
||||
|
||||
def efficiency(self):
|
||||
return self.total_efficiency / self.total_epochs
|
||||
Reference in New Issue
Block a user