init🎉:

This commit is contained in:
2024-03-09 10:55:34 +08:00
commit bc182d09e0
30 changed files with 3022 additions and 0 deletions

View File

View File

@ -0,0 +1,11 @@
from dataclasses import dataclass, field
### 定义一些配置信息
@dataclass
class FinetuneArguments:
model_name: str = field()
data_path: str = field()
train_size: int = field(default=-1)
test_size: int = field(default=100)
max_len: int = field(default=1024)

View File

@ -0,0 +1,4 @@
{
"fsdp_transformer_layer_cls_to_wrap": ["InternLMDecoderLayer"],
"limit_all_gathers": true
}

View File

@ -0,0 +1,4 @@
{
"fsdp_transformer_layer_cls_to_wrap": ["LlamaDecoderLayer"],
"limit_all_gathers": true
}

View File

@ -0,0 +1,4 @@
{
"fsdp_transformer_layer_cls_to_wrap": ["QWenBlock"],
"limit_all_gathers": true
}

View File

@ -0,0 +1,26 @@
logger_config = {
'version': 1,
'formatters': {
'simple': {
'format': f"%(asctime)s %(name)s %(levelname)s: %(message)s",
'datefmt': '%Y-%m-%d %H:%M:%S',
},
# 其他的 formatter
},
'handlers': {
'console': {
'class': 'logging.StreamHandler',
'level': 'DEBUG',
'formatter': 'simple',
},
# 其他的 handler
},
'loggers':{
# 仅输出到控制台,使用 StreamLogger
'StreamLogger': {
'handlers': ['console'],
'level': 'DEBUG',
},
# 其他的 Logger
}
}

136
train/run_log.txt Normal file
View File

@ -0,0 +1,136 @@
WARNING:torch.distributed.run:
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
*****************************************
Training model with params:
base_model: /home/tushilong/hf/models/Llama-2-7b-hf
output_dir: ../ckpts/stylish
micro_batch_size: 2
gradient_accumulation_steps: 1
train_batch_size: 2
gradient_checkpointing: True
num_epochs: 1
learning_rate: 2e-05
weight_decay: 0.0001
warmup_ratio: 0.06
deepspeed_config: None
fsdp: shard_grad_op auto_wrap offload
fsdp_config: ./configs/fsdp/llama2_fsdp_config.json
smart_embedding: False
wandb_project:
wandb_run_name:
wandb_watch:
wandb_log_model:
resume_from_checkpoint: False
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|█████ | 1/2 [00:03<00:03, 3.52s/it]
Loading checkpoint shards: 50%|█████ | 1/2 [00:03<00:03, 3.51s/it]
Loading checkpoint shards: 100%|██████████| 2/2 [00:04<00:00, 2.20s/it]
Loading checkpoint shards: 100%|██████████| 2/2 [00:04<00:00, 2.40s/it]
Loading checkpoint shards: 100%|██████████| 2/2 [00:04<00:00, 2.20s/it]
Loading checkpoint shards: 100%|██████████| 2/2 [00:04<00:00, 2.39s/it]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|█████ | 1/2 [00:03<00:03, 3.45s/it]
Loading checkpoint shards: 100%|██████████| 2/2 [00:04<00:00, 2.17s/it]
Loading checkpoint shards: 100%|██████████| 2/2 [00:04<00:00, 2.36s/it]
Detected kernel version 4.15.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
StateDictType.FULL_STATE_DICT FullStateDictConfig(offload_to_cpu=False, rank0_only=False)
You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
StateDictType.FULL_STATE_DICT FullStateDictConfig(offload_to_cpu=False, rank0_only=False)
0%| | 0/167 [00:00<?, ?it/s]You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
StateDictType.FULL_STATE_DICT FullStateDictConfig(offload_to_cpu=False, rank0_only=False)
You're using a LlamaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 4.90it/s]
Loading checkpoint shards: 50%|█████ | 1/2 [00:00<00:00, 4.20it/s]
Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 6.97it/s]
Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 6.55it/s]
Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 6.33it/s]
Loading checkpoint shards: 100%|██████████| 2/2 [00:00<00:00, 5.88it/s]
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...
Loading checkpoint shards: 50%|█████ | 1/2 [00:14<00:14, 14.71s/it]
Loading checkpoint shards: 100%|██████████| 2/2 [00:19<00:00, 8.65s/it]
Loading checkpoint shards: 100%|██████████| 2/2 [00:19<00:00, 9.55s/it]
`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...
Traceback (most recent call last):
File "/home/tushilong/code/realign/train/train.py", line 167, in <module>
fire.Fire(train)
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/fire/core.py", line 141, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/fire/core.py", line 475, in _Fire
component, remaining_args = _CallAndUpdateTrace(
^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/fire/core.py", line 691, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/code/realign/train/train.py", line 160, in train
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/transformers/trainer.py", line 1555, in train
return inner_training_loop(
^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/transformers/trainer.py", line 1837, in _inner_training_loop
tr_loss_step = self.training_step(model, inputs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/transformers/trainer.py", line 2682, in training_step
loss = self.compute_loss(model, inputs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/transformers/trainer.py", line 2707, in compute_loss
outputs = model(**inputs)
^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/accelerate/utils/operations.py", line 659, in forward
return model_forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/accelerate/utils/operations.py", line 647, in __call__
return convert_to_fp32(self.model_forward(*args, **kwargs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/torch/amp/autocast_mode.py", line 14, in decorate_autocast
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/accelerate/utils/operations.py", line 659, in forward
return model_forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/accelerate/utils/operations.py", line 647, in __call__
return convert_to_fp32(self.model_forward(*args, **kwargs))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/torch/amp/autocast_mode.py", line 14, in decorate_autocast
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/torch/distributed/fsdp/fully_sharded_data_parallel.py", line 748, in forward
output = self._fsdp_wrapped_module(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/code/realign/llama/rellama.py", line 129, in forward
assert torch.isnan(target_logits).sum() == 0, f"target_logits has nan: {torch.isnan(target_logits).sum()}"
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError: target_logits has nan: 10752000
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 20205 closing signal SIGTERM
WARNING:torch.distributed.elastic.multiprocessing.api:Sending process 20206 closing signal SIGTERM
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 2 (pid: 20207) of binary: /home/tushilong/anaconda3/envs/realign/bin/python
Traceback (most recent call last):
File "/home/tushilong/anaconda3/envs/realign/bin/torchrun", line 33, in <module>
sys.exit(load_entry_point('torch==2.0.1', 'console_scripts', 'torchrun')())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/tushilong/anaconda3/envs/realign/lib/python3.11/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper
return f(*args, **kwargs)
^^^^^^^^^^^^^^^^^^

168
train/train.py Normal file
View File

@ -0,0 +1,168 @@
import random
import sys
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2,3,4,5,6'
import fire
import torch
torch.autograd.set_detect_anomaly(True)
import transformers
from transformers import set_seed
set_seed(15)
from utils.datasets.nyt10_dataset import NYT10FullDataset, NYT10StylishDataset
from trainers import FSDPTrainingArguments, FSDPTrainer
from transformers import AutoTokenizer, AutoConfig
from transformers import AutoModelForCausalLM, LlamaForCausalLM
from llama import Method_1
def train(
# model/data params
base_model: str = '/home/tushilong/hf/models/Llama-2-7b-hf',
data_path: str = '../data/nyt10/nyt10_train.txt',
output_dir: str = '../ckpts/stylish',
# training hyperparams
do_train: bool = True,
micro_batch_size: int = 2,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = True,
num_epochs: int = 1,
save_steps: int = 500,
learning_rate: float = 2e-5,
lr_scheduler_type: str = 'cosine',
weight_decay: float = 1e-4,
warmup_ratio: float = 0.06,
deepspeed_config: str = None,
fsdp: str = 'shard_grad_op auto_wrap offload',
fsdp_config: str = './configs/fsdp/llama2_fsdp_config.json',
smart_embedding: bool = False,
# evaluating hyperparams
do_eval: bool = False,
val_set_size: int = 1000,
eval_batch_size: int = 4,
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Training model with params:\n"
f"base_model: {base_model}\n"
f"output_dir: {output_dir}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"gradient_accumulation_steps: {gradient_accumulation_steps}\n"
f"train_batch_size: {micro_batch_size * gradient_accumulation_steps}\n"
f"gradient_checkpointing: {gradient_checkpointing}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"weight_decay: {weight_decay}\n"
f"warmup_ratio: {warmup_ratio}\n"
f"deepspeed_config: {deepspeed_config}\n"
f"fsdp: {fsdp}\n"
f"fsdp_config: {fsdp_config}\n"
f"smart_embedding: {smart_embedding}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
)
assert (
not (deepspeed_config and fsdp)
), "Can not specified both deepspeed_config and fsdp_config"
# training arguments
bf16 = True # torch.cuda.get_device_capability()[0] >= 8
fp16 = not bf16
tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
tokenizer.pad_token_id = tokenizer.eos_token_id
# model = AutoModelForCausalLM.from_pretrained(base_model, trust_remote_code=True)
# model_dev_id = int(os.environ.get("LOCAL_RANK", 0))
model = Method_1.from_pretrained(base_model)
# Check if parameter passed or if set within environ
# use_wandb = len(wandb_project) > 0 or (
# "WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
# )
use_wandb = False
# Only overwrite environ if wandb param passed
# if len(wandb_project) > 0:
# os.environ["WANDB_PROJECT"] = wandb_project
# if len(wandb_watch) > 0:
# os.environ["WANDB_WATCH"] = wandb_watch
# if len(wandb_log_model) > 0:
# os.environ["WANDB_LOG_MODEL"] = wandb_log_model
# train_data = NYT10FullDataset(data_path, tokenizer)
# train_data = NYT10StylishDataset(data_path, tokenizer, 30)
train_data = NYT10StylishDataset(data_path, tokenizer, 1000)
val_data = None
training_args = FSDPTrainingArguments(
use_ffd_sampler=True,
output_dir=output_dir,
no_cuda=not torch.cuda.is_available(),
seed=15,
data_seed=15,
do_train=do_train,
num_train_epochs=num_epochs,
optim="adamw_torch",
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_ratio=warmup_ratio,
weight_decay=weight_decay,
half_precision_backend="auto",
fp16=fp16,
bf16=bf16,
adam_beta1=0.9,
adam_beta2=0.95,
save_strategy="steps",
save_steps=save_steps,
save_total_limit=2,
logging_steps=1,
report_to= "none", # "wandb" if use_wandb else None,
run_name=None, #wandb_run_name if use_wandb else None,
deepspeed=deepspeed_config,
fsdp=fsdp,
fsdp_config=fsdp_config,
gradient_checkpointing=gradient_checkpointing,
do_eval=do_eval and val_set_size > 0,
evaluation_strategy="steps" if do_eval and val_set_size > 0 else "no",
eval_steps=save_steps,
per_device_eval_batch_size=eval_batch_size,
# group_by_length=True,
)
trainer = FSDPTrainer(
model=model,
args=training_args,
train_dataset=train_data,
eval_dataset=val_data,
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors='pt', padding=True,
)
)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
if __name__ == "__main__":
fire.Fire(train)

View File

@ -0,0 +1,2 @@
from .fsdp_training_args import FSDPTrainingArguments
from .fsdp_trainer import FSDPTrainer

View File

@ -0,0 +1,161 @@
from typing import Optional, List
import torch.distributed as dist
from torch.utils.data import Sampler
import numpy as np
import numba
@numba.njit
def ffd(a: np.ndarray, c: int):
# First-fit-decreasing bin packing
# https://en.wikipedia.org/wiki/First-fit-decreasing_bin_packing
a = np.sort(a)[::-1]
bins = []
for size in a:
add_new = True
for idx in range(len(bins)):
if bins[idx] >= size:
bins[idx] -= size
add_new = False
break
if add_new:
bins.append(c - size)
return len(bins)
@numba.njit
def ffd_with_result(a: np.ndarray, c: int, start_index: int):
# First-fit-decreasing bin packing (with result return)
indices = np.argsort(a)[::-1]
a = a[indices]
bins = []
bins_result = []
for a_id, size in enumerate(a):
add_new = True
for idx in range(len(bins)):
if bins[idx] >= size:
bins[idx] -= size
bins_result[idx].append(indices[a_id] + start_index)
add_new = False
break
if add_new:
bins.append(c - size)
bins_result.append([indices[a_id] + start_index])
return bins_result
@numba.njit
def allocate(lengths: np.ndarray, lengths_cumsum: np.ndarray, rank: int, c: int, n: int):
# Dynamic batch allocator, similar to Multifit
# https://en.wikipedia.org/wiki/Multifit_algorithm
# ~96.4% efficiency on OpenChat training set (2048 ctx len)
s = 0
start_index = 0
result = []
while True:
# binary search [l, r)
l = 1
r = 1 + np.searchsorted(lengths_cumsum[start_index:], s + c * n, "right")
while r - l > 1:
m = (l + r) // 2
if ffd(lengths[start_index: start_index + m], c) <= n:
l = m
else:
r = m
# use length l
batch = ffd_with_result(lengths[start_index: start_index + l], c, start_index)
if len(batch) < n:
break
start_index += l
s = lengths_cumsum[start_index - 1]
# add local rank
result.append(batch[rank])
return result, s / max(1, len(result) * c * n) # Avoid division by zero
class FFDDistributedBatchSampler(Sampler):
"""Unpadded length sampling using FFD (First-fit-decreasing bin packing).
Approximate (at most ~1.22x) the optimal solution of the identical-machines scheduling problem, which is NP-hard."""
def __init__(
self,
batch_max_length: int,
lengths: List[int],
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
seed: int = 0,
):
# Get rank
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.num_replicas = num_replicas
self.rank = rank
self.seed = seed
self.batch_max_length = batch_max_length
self.lengths = lengths
assert isinstance(self.lengths, np.ndarray)
self.epoch = 0
# statistics
self.total_epochs = 0
self.total_efficiency = 0
def set_epoch(self, epoch: int):
self.epoch = epoch
def generate_batches(self, set_stats=False):
indices = np.random.default_rng(seed=self.seed + self.epoch).permutation(len(self.lengths))
lengths = self.lengths[indices]
lengths_cumsum = np.cumsum(lengths)
batches, efficiency = allocate(lengths=lengths,
lengths_cumsum=lengths_cumsum,
rank=self.rank,
c=self.batch_max_length,
n=self.num_replicas)
batches = [indices[batch] for batch in batches]
# statistics
if set_stats:
self.total_epochs += 1
self.total_efficiency += efficiency
return batches
def __iter__(self):
batches = self.generate_batches(set_stats=True)
return iter(batches)
def __len__(self):
batches = self.generate_batches()
return len(batches)
def efficiency(self):
return self.total_efficiency / self.total_epochs

View File

@ -0,0 +1,925 @@
import sys
import os
from typing import Optional
import torch
from torch.utils.data import DataLoader
import transformers
from transformers.trainer import *
from .ffd_sampler import FFDDistributedBatchSampler
from .utils import ExtendedFSDPOption, enable_low_gpu_full_post_state_dict_hook
class FSDPTrainer(transformers.Trainer):
def __init__(
self,
model: Union[PreTrainedModel, nn.Module] = None,
args: TrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None,
tokenizer: Optional[PreTrainedTokenizerBase] = None,
model_init: Optional[Callable[[], PreTrainedModel]] = None,
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
):
if args is None:
output_dir = "tmp_trainer"
logger.info(f"No `TrainingArguments` passed, using `output_dir={output_dir}`.")
args = TrainingArguments(output_dir=output_dir)
self.args = args
# Seed must be set before instantiating the model when using model
enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
self.hp_name = None
self.deepspeed = None
self.is_in_train = False
self.create_accelerator_and_postprocess()
# memory metrics - must set up as early as possible
self._memory_tracker = TrainerMemoryTracker(self.args.skip_memory_metrics)
self._memory_tracker.start()
# set the correct log level depending on the node
log_level = args.get_process_log_level()
logging.set_verbosity(log_level)
# force device and distributed setup init explicitly
args._setup_devices
if model is None:
if model_init is not None:
self.model_init = model_init
model = self.call_model_init()
else:
raise RuntimeError("`Trainer` requires either a `model` or `model_init` argument")
else:
if model_init is not None:
warnings.warn(
"`Trainer` requires either a `model` or `model_init` argument, but not both. `model_init` will"
" overwrite your model when calling the `train` method. This will become a fatal error in the next"
" release.",
FutureWarning,
)
self.model_init = model_init
if model.__class__.__name__ in MODEL_MAPPING_NAMES:
raise ValueError(
f"The model you have picked ({model.__class__.__name__}) cannot be used as is for training: it only "
"computes hidden states and does not accept any labels. You should choose a model with a head "
"suitable for your task like any of the `AutoModelForXxx` listed at "
"https://huggingface.co/docs/transformers/model_doc/auto."
)
if hasattr(model, "is_parallelizable") and model.is_parallelizable and model.model_parallel:
self.is_model_parallel = True
else:
self.is_model_parallel = False
if getattr(model, "hf_device_map", None) is not None:
devices = [device for device in set(model.hf_device_map.values()) if device not in ["cpu", "disk"]]
if len(devices) > 1:
self.is_model_parallel = True
else:
self.is_model_parallel = self.args.device != torch.device(devices[0])
# warn users
logger.info(
"You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set"
" to `True` to avoid any unexpected behavior such as device placement mismatching."
)
# At this stage the model is already loaded
if getattr(model, "is_quantized", False):
if getattr(model, "_is_quantized_training_enabled", False):
logger.info(
"The model is loaded in 8-bit precision. To train this model you need to add additional modules"
" inside the model such as adapters using `peft` library and freeze the model weights. Please"
" check "
" the examples in https://github.com/huggingface/peft for more details."
)
else:
raise ValueError(
"The model you want to train is loaded in 8-bit precision. if you want to fine-tune an 8-bit"
" model, please make sure that you have installed `bitsandbytes>=0.37.0`. "
)
# Setup Sharded DDP training
self.sharded_ddp = None
if len(args.sharded_ddp) > 0:
if self.is_deepspeed_enabled:
raise ValueError(
"Using --sharded_ddp xxx together with --deepspeed is not possible, deactivate one of those flags."
)
if len(args.fsdp) > 0:
raise ValueError(
"Using --sharded_ddp xxx together with --fsdp is not possible, deactivate one of those flags."
)
if args.parallel_mode != ParallelMode.DISTRIBUTED:
raise ValueError("Using sharded DDP only works in distributed training.")
elif not is_fairscale_available():
raise ImportError("Sharded DDP training requires fairscale: `pip install fairscale`.")
elif ShardedDDPOption.SIMPLE not in args.sharded_ddp and FullyShardedDDP is None:
raise ImportError(
"Sharded DDP in a mode other than simple training requires fairscale version >= 0.3, found "
f"{fairscale.__version__}. Upgrade your fairscale library: `pip install --upgrade fairscale`."
)
elif ShardedDDPOption.SIMPLE in args.sharded_ddp:
self.sharded_ddp = ShardedDDPOption.SIMPLE
elif ShardedDDPOption.ZERO_DP_2 in args.sharded_ddp:
self.sharded_ddp = ShardedDDPOption.ZERO_DP_2
elif ShardedDDPOption.ZERO_DP_3 in args.sharded_ddp:
self.sharded_ddp = ShardedDDPOption.ZERO_DP_3
self.fsdp = None
if len(args.fsdp) > 0:
if self.is_deepspeed_enabled:
raise ValueError(
"Using --fsdp xxx together with --deepspeed is not possible, deactivate one of those flags."
)
if not args.fsdp_config["xla"] and args.parallel_mode != ParallelMode.DISTRIBUTED:
raise ValueError("Using fsdp only works in distributed training.")
# dep_version_check("torch>=1.12.0")
# Would have to update setup.py with torch>=1.12.0
# which isn't ideally given that it will force people not using FSDP to also use torch>=1.12.0
# below is the current alternative.
if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.12.0"):
raise ValueError("FSDP requires PyTorch >= 1.12.0")
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch, ShardingStrategy
if ExtendedFSDPOption.FULL_SHARD in args.fsdp:
self.fsdp = ShardingStrategy.FULL_SHARD
elif ExtendedFSDPOption.SHARD_GRAD_OP in args.fsdp:
self.fsdp = ShardingStrategy.SHARD_GRAD_OP
elif ExtendedFSDPOption.NO_SHARD in args.fsdp:
self.fsdp = ShardingStrategy.NO_SHARD
# extention starts here
elif ExtendedFSDPOption.HYBRID_SHARD in args.fsdp:
self.fsdp = ShardingStrategy.HYBRID_SHARD
elif ExtendedFSDPOption._HYBRID_SHARD_ZERO2 in args.fsdp:
self.fsdp = ShardingStrategy._HYBRID_SHARD_ZERO2
# extention ends here
self.backward_prefetch = BackwardPrefetch.BACKWARD_PRE
# modification starts here
if self.args.fsdp_config.get("fsdp_backward_prefetch", "") == "backward_post":
self.backward_prefetch = BackwardPrefetch.BACKWARD_POST
# modification ends here
self.forward_prefetch = False
# modification starts here
if self.args.fsdp_config.get("forward_prefetch", False):
# modification ends here
self.forward_prefetch = True
self.limit_all_gathers = False
if self.args.fsdp_config.get("limit_all_gathers", False):
self.limit_all_gathers = True
# one place to sort out whether to place the model on device or not
# postpone switching model to cuda when:
# 1. MP - since we are trying to fit a much bigger than 1 gpu model
# 2. fp16-enabled DeepSpeed loads the model in half the size and it doesn't need .to() anyway,
# and we only use deepspeed for training at the moment
# 3. full bf16 or fp16 eval - since the model needs to be cast to the right dtype first
# 4. Sharded DDP - same as MP
# 5. FSDP - same as MP
self.place_model_on_device = args.place_model_on_device
if (
self.is_model_parallel
or self.is_deepspeed_enabled
or ((args.fp16_full_eval or args.bf16_full_eval) and not args.do_train)
or (self.sharded_ddp in [ShardedDDPOption.ZERO_DP_2, ShardedDDPOption.ZERO_DP_3])
or (self.fsdp is not None)
or self.is_fsdp_enabled
):
self.place_model_on_device = False
default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
self.data_collator = data_collator if data_collator is not None else default_collator
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.tokenizer = tokenizer
# Quantized models doesn't support `.to` operation.
if self.place_model_on_device and not getattr(model, "is_quantized", False):
self._move_model_to_device(model, args.device)
# Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
if self.is_model_parallel:
self.args._n_gpu = 1
# later use `self.model is self.model_wrapped` to check if it's wrapped or not
self.model_wrapped = model
self.model = model
self.compute_metrics = compute_metrics
self.preprocess_logits_for_metrics = preprocess_logits_for_metrics
self.optimizer, self.lr_scheduler = optimizers
if model_init is not None and (self.optimizer is not None or self.lr_scheduler is not None):
raise RuntimeError(
"Passing a `model_init` is incompatible with providing the `optimizers` argument. "
"You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
)
if is_torch_tpu_available() and self.optimizer is not None:
for param in self.model.parameters():
model_device = param.device
break
for param_group in self.optimizer.param_groups:
if len(param_group["params"]) > 0:
optimizer_device = param_group["params"][0].device
break
if model_device != optimizer_device:
raise ValueError(
"The model and the optimizer parameters are not on the same device, which probably means you"
" created an optimizer around your model **before** putting on the device and passing it to the"
" `Trainer`. Make sure the lines `import torch_xla.core.xla_model as xm` and"
" `model.to(xm.xla_device())` is performed before the optimizer creation in your script."
)
if ((self.sharded_ddp is not None) or self.is_deepspeed_enabled or (self.fsdp is not None)) and (
self.optimizer is not None or self.lr_scheduler is not None
):
raise RuntimeError(
"Passing `optimizers` is not allowed if Fairscale, Deepspeed or PyTorch FSDP is enabled."
"You should subclass `Trainer` and override the `create_optimizer_and_scheduler` method."
)
default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
self.callback_handler = CallbackHandler(
callbacks, self.model, self.tokenizer, self.optimizer, self.lr_scheduler
)
self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
# Will be set to True by `self._setup_loggers()` on first call to `self.log()`.
self._loggers_initialized = False
# Create clone of distant repo and output directory if needed
if self.args.push_to_hub:
self.init_git_repo(at_init=True)
# In case of pull, we need to make sure every process has the latest.
if is_torch_tpu_available():
xm.rendezvous("init git repo")
elif args.parallel_mode == ParallelMode.DISTRIBUTED:
dist.barrier()
if self.args.should_save:
os.makedirs(self.args.output_dir, exist_ok=True)
if not callable(self.data_collator) and callable(getattr(self.data_collator, "collate_batch", None)):
raise ValueError("The `data_collator` should be a simple callable (function, class with `__call__`).")
if args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
if train_dataset is not None and not has_length(train_dataset) and args.max_steps <= 0:
raise ValueError(
"The train_dataset does not implement __len__, max_steps has to be specified. "
"The number of steps needs to be known in advance for the learning rate scheduler."
)
if (
train_dataset is not None
and isinstance(train_dataset, torch.utils.data.IterableDataset)
and args.group_by_length
):
raise ValueError("the `--group_by_length` option is only available for `Dataset`, not `IterableDataset")
self._signature_columns = None
# Mixed precision setup
self.use_apex = False
self.use_cuda_amp = False
self.use_cpu_amp = False
# Mixed precision setup for SageMaker Model Parallel
if is_sagemaker_mp_enabled():
# BF16 + model parallelism in SageMaker: currently not supported, raise an error
if args.bf16:
raise ValueError("SageMaker Model Parallelism does not support BF16 yet. Please use FP16 instead ")
if IS_SAGEMAKER_MP_POST_1_10:
# When there's mismatch between SMP config and trainer argument, use SMP config as truth
if args.fp16 != smp.state.cfg.fp16:
logger.warning(
f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16},"
f"but FP16 provided in trainer argument is {args.fp16},"
f"setting to {smp.state.cfg.fp16}"
)
args.fp16 = smp.state.cfg.fp16
else:
# smp < 1.10 does not support fp16 in trainer.
if hasattr(smp.state.cfg, "fp16"):
logger.warning(
f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16}, "
"but SageMaker Model Parallelism < 1.10 does not support FP16 in trainer."
)
if (args.fp16 or args.bf16) and self.sharded_ddp is not None:
if args.half_precision_backend == "auto":
if args.device == torch.device("cpu"):
if args.fp16:
raise ValueError("Tried to use `fp16` but it is not supported on cpu")
else:
args.half_precision_backend = "cpu_amp"
else:
args.half_precision_backend = "cuda_amp"
logger.info(f"Using {args.half_precision_backend} half precision backend")
self.do_grad_scaling = False
if (args.fp16 or args.bf16) and not (self.is_deepspeed_enabled or is_sagemaker_mp_enabled()):
# deepspeed and SageMaker Model Parallel manage their own half precision
if self.sharded_ddp is not None:
if args.half_precision_backend == "cuda_amp":
self.use_cuda_amp = True
self.amp_dtype = torch.float16 if args.fp16 else torch.bfloat16
# bf16 does not need grad scaling
self.do_grad_scaling = self.amp_dtype == torch.float16
if self.do_grad_scaling:
if self.sharded_ddp is not None:
self.scaler = ShardedGradScaler()
elif self.fsdp is not None:
from torch.distributed.fsdp.sharded_grad_scaler import (
ShardedGradScaler as FSDPShardedGradScaler,
)
self.scaler = FSDPShardedGradScaler()
elif is_torch_tpu_available():
from torch_xla.amp import GradScaler
self.scaler = GradScaler()
else:
self.scaler = torch.cuda.amp.GradScaler()
elif args.half_precision_backend == "cpu_amp":
self.use_cpu_amp = True
self.amp_dtype = torch.bfloat16
elif args.half_precision_backend == "apex":
if not is_apex_available():
raise ImportError(
"Using FP16 with APEX but APEX is not installed, please refer to"
" https://www.github.com/nvidia/apex."
)
self.use_apex = True
# FP16 + model parallelism in SageMaker: gradient clipping does not work for now so we raise a helpful error.
if (
is_sagemaker_mp_enabled()
and self.use_cuda_amp
and args.max_grad_norm is not None
and args.max_grad_norm > 0
):
raise ValueError(
"SageMaker Model Parallelism in mixed precision mode does not support gradient clipping yet. Pass "
"along 'max_grad_norm': 0 in your hyperparameters."
)
# Label smoothing
if self.args.label_smoothing_factor != 0:
self.label_smoother = LabelSmoother(epsilon=self.args.label_smoothing_factor)
else:
self.label_smoother = None
self.state = TrainerState(
is_local_process_zero=self.is_local_process_zero(),
is_world_process_zero=self.is_world_process_zero(),
)
self.control = TrainerControl()
# Internal variable to count flos in each process, will be accumulated in `self.state.total_flos` then
# returned to 0 every time flos need to be logged
self.current_flos = 0
self.hp_search_backend = None
self.use_tune_checkpoints = False
default_label_names = find_labels(self.model.__class__)
self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
self.can_return_loss = can_return_loss(self.model.__class__)
self.control = self.callback_handler.on_init_end(self.args, self.state, self.control)
# Internal variables to help with automatic batch size reduction
self._train_batch_size = args.train_batch_size
self._created_lr_scheduler = False
# very last
self._memory_tracker.stop_and_update_metrics()
# torch.compile
if args.torch_compile and not is_torch_compile_available():
raise RuntimeError("Using torch.compile requires PyTorch 2.0 or higher.")
# finally applying `low_gpu_full_post_state_dict_hook`` for fsdp `state_dict`
enable_low_gpu_full_post_state_dict_hook()
def _wrap_model(self, model, training=True, dataloader=None):
if self.args.use_ipex:
dtype = torch.bfloat16 if self.use_cpu_amp else torch.float32
model = self.ipex_optimize_model(model, training, dtype=dtype)
if is_sagemaker_mp_enabled():
# Wrapping the base model twice in a DistributedModel will raise an error.
if isinstance(self.model_wrapped, smp.model.DistributedModel):
return self.model_wrapped
return smp.DistributedModel(model, backward_passes_per_step=self.args.gradient_accumulation_steps)
# train/eval could be run multiple-times - if already wrapped, don't re-wrap it again
if unwrap_model(model) is not model:
return model
# Mixed precision training with apex (torch < 1.6)
if self.use_apex and training:
model, self.optimizer = amp.initialize(model, self.optimizer, opt_level=self.args.fp16_opt_level)
# Multi-gpu training (should be after apex fp16 initialization) / 8bit models does not support DDP
if self.args.n_gpu > 1 and not getattr(model, "is_loaded_in_8bit", False):
model = nn.DataParallel(model)
if self.args.jit_mode_eval:
start_time = time.time()
model = self.torch_jit_model_eval(model, dataloader, training)
self.jit_compilation_time = round(time.time() - start_time, 4)
# Note: in torch.distributed mode, there's no point in wrapping the model
# inside a DistributedDataParallel as we'll be under `no_grad` anyways.
if not training:
return model
# Distributed training (should be after apex fp16 initialization)
if self.sharded_ddp is not None:
# Sharded DDP!
if self.sharded_ddp == ShardedDDPOption.SIMPLE:
model = ShardedDDP(model, self.optimizer)
else:
mixed_precision = self.args.fp16 or self.args.bf16
cpu_offload = ShardedDDPOption.OFFLOAD in self.args.sharded_ddp
zero_3 = self.sharded_ddp == ShardedDDPOption.ZERO_DP_3
# XXX: Breaking the self.model convention but I see no way around it for now.
if ShardedDDPOption.AUTO_WRAP in self.args.sharded_ddp:
model = auto_wrap(model)
self.model = model = FullyShardedDDP(
model,
mixed_precision=mixed_precision,
reshard_after_forward=zero_3,
cpu_offload=cpu_offload,
).to(self.args.device)
# Distributed training using PyTorch FSDP
elif self.fsdp is not None:
# fix starts here
if not self.args.fsdp_config["xla"]:
# PyTorch FSDP!
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, MixedPrecision
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy, transformer_auto_wrap_policy
import torch.distributed.fsdp._traversal_utils as traversal_utils
if FSDPOption.OFFLOAD in self.args.fsdp:
cpu_offload = CPUOffload(offload_params=True)
else:
cpu_offload = CPUOffload(offload_params=False)
auto_wrap_policy = None
if FSDPOption.AUTO_WRAP in self.args.fsdp:
if self.args.fsdp_config["fsdp_min_num_params"] > 0:
auto_wrap_policy = functools.partial(
size_based_auto_wrap_policy, min_num_params=self.args.fsdp_config["fsdp_min_num_params"]
)
elif self.args.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None:
transformer_cls_to_wrap = set()
for layer_class in self.args.fsdp_config["fsdp_transformer_layer_cls_to_wrap"]:
transformer_cls = get_module_class_from_name(model, layer_class)
if transformer_cls is None:
raise Exception("Could not find the transformer layer class to wrap in the model.")
else:
transformer_cls_to_wrap.add(transformer_cls)
auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
# Transformer layer class to wrap
transformer_layer_cls=transformer_cls_to_wrap,
)
mixed_precision_policy = None
dtype = None
if self.args.fp16:
dtype = torch.float16
elif self.args.bf16:
dtype = torch.bfloat16
if dtype is not None:
mixed_precision_policy = MixedPrecision(param_dtype=dtype, reduce_dtype=dtype, buffer_dtype=dtype)
if type(model) != FSDP:
# XXX: Breaking the self.model convention but I see no way around it for now.
signature = inspect.signature(FSDP.__init__).parameters.keys()
kwargs = {}
for arg in ["limit_all_gathers", "forward_prefetch", "backward_prefetch"]:
if arg in signature:
kwargs[arg] = getattr(self, arg)
self.model = model = FSDP(
model,
sharding_strategy=self.fsdp,
cpu_offload=cpu_offload,
auto_wrap_policy=auto_wrap_policy,
mixed_precision=mixed_precision_policy,
device_id=self.args.device,
**kwargs,
)
for submodule in traversal_utils._get_fsdp_states(model):
print(submodule._state_dict_type, submodule._state_dict_config)
break
# fix ends here
else:
try:
from torch_xla.distributed.fsdp import XlaFullyShardedDataParallel as FSDP
from torch_xla.distributed.fsdp import checkpoint_module
from torch_xla.distributed.fsdp.wrap import (
size_based_auto_wrap_policy,
transformer_auto_wrap_policy,
)
except ImportError:
raise ImportError("Missing XLA FSDP related module; please make sure to use torch-xla >= 2.0.")
auto_wrap_policy = None
auto_wrapper_callable = None
if self.args.fsdp_config["fsdp_min_num_params"] > 0:
auto_wrap_policy = functools.partial(
size_based_auto_wrap_policy, min_num_params=self.args.fsdp_config["fsdp_min_num_params"]
)
elif self.args.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None:
transformer_cls_to_wrap = set()
for layer_class in self.args.fsdp_config["fsdp_transformer_layer_cls_to_wrap"]:
transformer_cls = get_module_class_from_name(model, layer_class)
if transformer_cls is None:
raise Exception("Could not find the transformer layer class to wrap in the model.")
else:
transformer_cls_to_wrap.add(transformer_cls)
auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
# Transformer layer class to wrap
transformer_layer_cls=transformer_cls_to_wrap,
)
fsdp_kwargs = self.args.xla_fsdp_config
if self.args.fsdp_config["xla_fsdp_grad_ckpt"]:
# Apply gradient checkpointing to auto-wrapped sub-modules if specified
def auto_wrapper_callable(m, *args, **kwargs):
return FSDP(checkpoint_module(m), *args, **kwargs)
# Wrap the base model with an outer FSDP wrapper
self.model = model = FSDP(
model,
auto_wrap_policy=auto_wrap_policy,
auto_wrapper_callable=auto_wrapper_callable,
**fsdp_kwargs,
)
# Patch `xm.optimizer_step` should not reduce gradients in this case,
# as FSDP does not need gradient reduction over sharded parameters.
def patched_optimizer_step(optimizer, barrier=False, optimizer_args={}):
loss = optimizer.step(**optimizer_args)
if barrier:
xm.mark_step()
return loss
xm.optimizer_step = patched_optimizer_step
elif is_sagemaker_dp_enabled():
model = nn.parallel.DistributedDataParallel(
model, device_ids=[int(os.getenv("SMDATAPARALLEL_LOCAL_RANK"))]
)
elif self.args.parallel_mode == ParallelMode.DISTRIBUTED:
if is_torch_neuroncore_available():
return model
kwargs = {}
if self.args.ddp_find_unused_parameters is not None:
kwargs["find_unused_parameters"] = self.args.ddp_find_unused_parameters
elif isinstance(model, PreTrainedModel):
# find_unused_parameters breaks checkpointing as per
# https://github.com/huggingface/transformers/pull/4659#issuecomment-643356021
kwargs["find_unused_parameters"] = not model.is_gradient_checkpointing
else:
kwargs["find_unused_parameters"] = True
if self.args.ddp_bucket_cap_mb is not None:
kwargs["bucket_cap_mb"] = self.args.ddp_bucket_cap_mb
if self.args.ddp_broadcast_buffers is not None:
kwargs["broadcast_buffers"] = self.args.ddp_broadcast_buffers
self.accelerator.ddp_handler = DistributedDataParallelKwargs(**kwargs)
return model
def get_batch_sampler(self, dataset=None):
if self.args.use_ffd_sampler and self.args.group_by_length and self.args.world_size > 1:
dataset = dataset if dataset is not None else self.train_dataset
try:
batch_max_len = self.args.per_device_train_batch_size * unwrap_model(self.model).model_avg_context
except:
# raise RuntimeError("group_by_length in distributed training requires model has attr `model_max_context`")
batch_max_len = self.args.per_device_train_batch_size * self.args.model_avg_context
model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
lengths = LengthGroupedSampler(
batch_size=-1, # we just want to know about the lengths of the dataset so no need to pass `batch_size`
dataset=dataset,
model_input_name=model_input_name
).lengths
seed = self.args.data_seed if self.args.data_seed is not None else self.args.seed
batch_sampler = FFDDistributedBatchSampler(
batch_max_length=batch_max_len,
lengths=np.array(lengths),
seed=seed
)
return batch_sampler
return None
def get_train_dataloader(self) -> DataLoader:
if self.args.use_ffd_sampler and self.args.group_by_length and self.args.world_size > 1:
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_dataset = self.train_dataset
data_collator = self.data_collator
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
train_dataset = self._remove_unused_columns(train_dataset, description="training")
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
batch_sampler = self.get_batch_sampler(train_dataset)
dataloader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
drop_last=self.args.dataloader_drop_last,
collate_fn=data_collator
)
# return self.accelerator.prepare(dataloader)
return dataloader
return super().get_train_dataloader()
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
"""
Will save the model, so you can reload it using `from_pretrained()`.
Will only save from the main process.
"""
if output_dir is None:
output_dir = self.args.output_dir
if is_torch_tpu_available():
self._save_tpu(output_dir)
elif is_sagemaker_mp_enabled():
# Calling the state_dict needs to be done on the wrapped model and on all processes.
os.makedirs(output_dir, exist_ok=True)
state_dict = self.model_wrapped.state_dict()
if self.args.should_save:
self._save(output_dir, state_dict=state_dict)
if IS_SAGEMAKER_MP_POST_1_10:
# 'user_content.pt' indicates model state_dict saved with smp >= 1.10
Path(os.path.join(output_dir, "user_content.pt")).touch()
elif (
ShardedDDPOption.ZERO_DP_2 in self.args.sharded_ddp
or ShardedDDPOption.ZERO_DP_3 in self.args.sharded_ddp
or self.fsdp is not None
or self.is_fsdp_enabled
):
state_dict = self.model.state_dict()
if self.args.should_save:
self._save(output_dir, state_dict=state_dict)
# modification starts here
if self.is_fsdp_enabled and self.args.save_with_fsdp:
save_fsdp_model(self.accelerator.state.fsdp_plugin, self.accelerator, self.model, output_dir)
# modification ends here
elif self.is_deepspeed_enabled:
# this takes care of everything as long as we aren't under zero3
if version.parse(accelerate_version) <= version.parse("0.20.3"):
raise ValueError("Install Accelerate from main branch")
try:
state_dict = self.accelerator.get_state_dict(self.deepspeed)
if self.args.should_save:
self._save(output_dir, state_dict=state_dict)
except ValueError:
logger.warning(
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead, use"
" zero_to_fp32.py to recover weights"
)
self.model_wrapped.save_checkpoint(output_dir)
elif self.args.should_save:
self._save(output_dir)
# Push to the Hub when `save_model` is called by the user.
if self.args.push_to_hub and not _internal_call:
self.push_to_hub(commit_message="Model save")
def _save_checkpoint(self, model, trial, metrics=None):
# In all cases, including ddp/dp/deepspeed, self.model is always a reference to the model we
# want to save except FullyShardedDDP.
# assert unwrap_model(model) is self.model, "internal model should be a reference to self.model"
# Save model checkpoint
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
if self.hp_search_backend is None and trial is None:
self.store_flos()
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
self.save_model(output_dir, _internal_call=True)
if self.is_deepspeed_enabled:
# under zero3 model file itself doesn't get saved since it's bogus! Unless deepspeed
# config `stage3_gather_16bit_weights_on_model_save` is True
self.model_wrapped.save_checkpoint(output_dir)
# Save optimizer and scheduler
if self.sharded_ddp == ShardedDDPOption.SIMPLE:
self.optimizer.consolidate_state_dict()
if self.fsdp or self.is_fsdp_enabled:
if self.is_fsdp_enabled:
# modification starts here
if self.args.save_with_fsdp:
save_fsdp_optimizer(
self.accelerator.state.fsdp_plugin, self.accelerator, self.optimizer, self.model, output_dir
)
# modification ends here
else:
# FSDP has a different interface for saving optimizer states.
# Needs to be called on all ranks to gather all states.
# full_optim_state_dict will be deprecated after Pytorch 2.2!
full_osd = self.model.__class__.full_optim_state_dict(self.model, self.optimizer)
if is_torch_tpu_available():
xm.rendezvous("saving_optimizer_states")
xm.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
with warnings.catch_warnings(record=True) as caught_warnings:
xm.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
reissue_pt_warnings(caught_warnings)
elif is_sagemaker_mp_enabled():
opt_state_dict = self.optimizer.local_state_dict(gather_if_shard=False)
smp.barrier()
if smp.rdp_rank() == 0 or smp.state.cfg.shard_optimizer_state:
smp.save(
opt_state_dict,
os.path.join(output_dir, OPTIMIZER_NAME),
partial=True,
v3=smp.state.cfg.shard_optimizer_state,
)
if self.args.should_save:
with warnings.catch_warnings(record=True) as caught_warnings:
torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
reissue_pt_warnings(caught_warnings)
if self.do_grad_scaling:
torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
elif self.args.should_save and not self.is_deepspeed_enabled:
# deepspeed.save_checkpoint above saves model/optim/sched
if self.fsdp and not self.is_fsdp_enabled:
torch.save(full_osd, os.path.join(output_dir, OPTIMIZER_NAME))
else:
torch.save(self.optimizer.state_dict(), os.path.join(output_dir, OPTIMIZER_NAME))
with warnings.catch_warnings(record=True) as caught_warnings:
torch.save(self.lr_scheduler.state_dict(), os.path.join(output_dir, SCHEDULER_NAME))
reissue_pt_warnings(caught_warnings)
if self.do_grad_scaling:
torch.save(self.scaler.state_dict(), os.path.join(output_dir, SCALER_NAME))
# Determine the new best metric / best model checkpoint
if metrics is not None and self.args.metric_for_best_model is not None:
metric_to_check = self.args.metric_for_best_model
if not metric_to_check.startswith("eval_"):
metric_to_check = f"eval_{metric_to_check}"
metric_value = metrics[metric_to_check]
operator = np.greater if self.args.greater_is_better else np.less
if (
self.state.best_metric is None
or self.state.best_model_checkpoint is None
or operator(metric_value, self.state.best_metric)
):
self.state.best_metric = metric_value
self.state.best_model_checkpoint = output_dir
# Save the Trainer state
if self.args.should_save:
self.state.save_to_json(os.path.join(output_dir, TRAINER_STATE_NAME))
# Save RNG state in non-distributed training
rng_states = {
"python": random.getstate(),
"numpy": np.random.get_state(),
"cpu": torch.random.get_rng_state(),
}
if torch.cuda.is_available():
if self.args.parallel_mode == ParallelMode.DISTRIBUTED:
# In non distributed, we save the global CUDA RNG state (will take care of DataParallel)
rng_states["cuda"] = torch.cuda.random.get_rng_state_all()
else:
rng_states["cuda"] = torch.cuda.random.get_rng_state()
if is_torch_tpu_available():
rng_states["xla"] = xm.get_rng_state()
# A process can arrive here before the process 0 has a chance to save the model, in which case output_dir may
# not yet exist.
os.makedirs(output_dir, exist_ok=True)
if self.args.world_size <= 1:
torch.save(rng_states, os.path.join(output_dir, "rng_state.pth"))
else:
torch.save(rng_states, os.path.join(output_dir, f"rng_state_{self.args.process_index}.pth"))
if self.args.push_to_hub:
self._push_from_checkpoint(output_dir)
# Maybe delete some older checkpoints.
if self.args.should_save:
self._rotate_checkpoints(use_mtime=True, output_dir=run_dir)
def _load_optimizer_and_scheduler(self, checkpoint):
"""If optimizer and scheduler states exist, load them."""
if checkpoint is None:
return
if self.is_deepspeed_enabled:
# deepspeed loads optimizer/lr_scheduler together with the model in deepspeed_init
return
checkpoint_file_exists = (
glob.glob(os.path.join(checkpoint, OPTIMIZER_NAME) + "_*")
if is_sagemaker_mp_enabled()
else os.path.isfile(os.path.join(checkpoint, OPTIMIZER_NAME))
)
if checkpoint_file_exists and os.path.isfile(os.path.join(checkpoint, SCHEDULER_NAME)):
# Load in optimizer and scheduler states
if is_torch_tpu_available():
# On TPU we have to take some extra precautions to properly load the states on the right device.
optimizer_state = torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location="cpu")
with warnings.catch_warnings(record=True) as caught_warnings:
lr_scheduler_state = torch.load(os.path.join(checkpoint, SCHEDULER_NAME), map_location="cpu")
reissue_pt_warnings(caught_warnings)
xm.send_cpu_data_to_device(optimizer_state, self.args.device)
xm.send_cpu_data_to_device(lr_scheduler_state, self.args.device)
self.optimizer.load_state_dict(optimizer_state)
self.lr_scheduler.load_state_dict(lr_scheduler_state)
else:
if is_sagemaker_mp_enabled():
if os.path.isfile(os.path.join(checkpoint, "user_content.pt")):
# Optimizer checkpoint was saved with smp >= 1.10
def opt_load_hook(mod, opt):
opt.load_state_dict(smp.load(os.path.join(checkpoint, OPTIMIZER_NAME), partial=True))
else:
# Optimizer checkpoint was saved with smp < 1.10
def opt_load_hook(mod, opt):
if IS_SAGEMAKER_MP_POST_1_10:
opt.load_state_dict(
smp.load(os.path.join(checkpoint, OPTIMIZER_NAME), partial=True, back_compat=True)
)
else:
opt.load_state_dict(smp.load(os.path.join(checkpoint, OPTIMIZER_NAME), partial=True))
self.model_wrapped.register_post_step_hook(opt_load_hook)
else:
# We use the CPU when training on one GPU to avoid OOM for GPU RAM when training big models.
# In distributed training however, we load directly on each GPU and risk the GPU OOM as it's more
# likely to get OOM on CPU (since we load num_gpu times the optimizer state
map_location = self.args.device if self.args.world_size > 1 else "cpu"
if self.fsdp or self.is_fsdp_enabled:
# modification starts here
if self.is_fsdp_enabled and self.args.save_with_fsdp:
load_fsdp_optimizer(
self.accelerator.state.fsdp_plugin,
self.accelerator,
self.optimizer,
self.model,
checkpoint,
)
elif not self.is_fsdp_enabled:
full_osd = None
# In FSDP, we need to load the full optimizer state dict on rank 0 and then shard it
if self.args.process_index == 0:
full_osd = torch.load(os.path.join(checkpoint, OPTIMIZER_NAME))
# call scatter_full_optim_state_dict on all ranks
sharded_osd = self.model.__class__.scatter_full_optim_state_dict(full_osd, self.model)
self.optimizer.load_state_dict(sharded_osd)
else:
self.optimizer.load_state_dict(
torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location=map_location)
)
# modification ends here
else:
self.optimizer.load_state_dict(
torch.load(os.path.join(checkpoint, OPTIMIZER_NAME), map_location=map_location)
)
with warnings.catch_warnings(record=True) as caught_warnings:
self.lr_scheduler.load_state_dict(torch.load(os.path.join(checkpoint, SCHEDULER_NAME)))
reissue_pt_warnings(caught_warnings)
if self.do_grad_scaling and os.path.isfile(os.path.join(checkpoint, SCALER_NAME)):
self.scaler.load_state_dict(torch.load(os.path.join(checkpoint, SCALER_NAME)))

View File

@ -0,0 +1,478 @@
import sys
import os
import transformers
from transformers.training_args import *
from .utils import ExtendedFSDPOption
@dataclass
class FSDPTrainingArguments(transformers.TrainingArguments):
# about data-efficient sampler
use_ffd_sampler: bool = False
model_avg_context: int = 2048
# about saving
# if not save with fsdp, then must not load with fsdp
save_with_fsdp: bool = False
def __post_init__(self):
# expand paths, if not os.makedirs("~/bar") will make directory
# in the current directory instead of the actual home
# see https://github.com/huggingface/transformers/issues/10628
if self.output_dir is not None:
self.output_dir = os.path.expanduser(self.output_dir)
if self.logging_dir is None and self.output_dir is not None:
self.logging_dir = os.path.join(self.output_dir, default_logdir())
if self.logging_dir is not None:
self.logging_dir = os.path.expanduser(self.logging_dir)
if self.disable_tqdm is None:
self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN
if isinstance(self.evaluation_strategy, EvaluationStrategy):
warnings.warn(
"using `EvaluationStrategy` for `evaluation_strategy` is deprecated and will be removed in version 5"
" of 🤗 Transformers. Use `IntervalStrategy` instead",
FutureWarning,
)
# Go back to the underlying string or we won't be able to instantiate `IntervalStrategy` on it.
self.evaluation_strategy = self.evaluation_strategy.value
# if self.xpu_backend is not None:
# warnings.warn(
# "using `xpu_backend` is deprecated and will be removed in version 4.31"
# " of 🤗 Transformers. Use `ddp_backend` instead",
# FutureWarning,
# )
# self.ddp_backend = self.xpu_backend
self.evaluation_strategy = IntervalStrategy(self.evaluation_strategy)
self.logging_strategy = IntervalStrategy(self.logging_strategy)
self.save_strategy = IntervalStrategy(self.save_strategy)
self.hub_strategy = HubStrategy(self.hub_strategy)
self.lr_scheduler_type = SchedulerType(self.lr_scheduler_type)
if self.do_eval is False and self.evaluation_strategy != IntervalStrategy.NO:
self.do_eval = True
# eval_steps has to be defined and non-zero, fallbacks to logging_steps if the latter is non-zero
if self.evaluation_strategy == IntervalStrategy.STEPS and (self.eval_steps is None or self.eval_steps == 0):
if self.logging_steps > 0:
logger.info(f"using `logging_steps` to initialize `eval_steps` to {self.logging_steps}")
self.eval_steps = self.logging_steps
else:
raise ValueError(
f"evaluation strategy {self.evaluation_strategy} requires either non-zero --eval_steps or"
" --logging_steps"
)
# logging_steps must be non-zero for logging_strategy that is other than 'no'
if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps == 0:
raise ValueError(f"logging strategy {self.logging_strategy} requires non-zero --logging_steps")
if self.logging_strategy == IntervalStrategy.STEPS and self.logging_steps > 1:
if self.logging_steps != int(self.logging_steps):
raise ValueError(f"--logging_steps must be an integer if bigger than 1: {self.logging_steps}")
self.logging_steps = int(self.logging_steps)
if self.evaluation_strategy == IntervalStrategy.STEPS and self.eval_steps > 1:
if self.eval_steps != int(self.eval_steps):
raise ValueError(f"--eval_steps must be an integer if bigger than 1: {self.eval_steps}")
self.eval_steps = int(self.eval_steps)
if self.save_strategy == IntervalStrategy.STEPS and self.save_steps > 1:
if self.save_steps != int(self.save_steps):
raise ValueError(f"--save_steps must be an integer if bigger than 1: {self.save_steps}")
self.save_steps = int(self.save_steps)
# Sanity checks for load_best_model_at_end: we require save and eval strategies to be compatible.
if self.load_best_model_at_end:
if self.evaluation_strategy != self.save_strategy:
raise ValueError(
"--load_best_model_at_end requires the save and eval strategy to match, but found\n- Evaluation "
f"strategy: {self.evaluation_strategy}\n- Save strategy: {self.save_strategy}"
)
if self.evaluation_strategy == IntervalStrategy.STEPS and self.save_steps % self.eval_steps != 0:
if self.eval_steps < 1 or self.save_steps < 1:
if not (self.eval_steps < 1 and self.save_steps < 1):
raise ValueError(
"--load_best_model_at_end requires the saving steps to be a multiple of the evaluation "
"steps, which cannot get guaranteed when mixing ratio and absolute steps for save_steps"
f"{self.save_steps} and eval_steps {self.eval_steps}."
)
# Work around floating point precision issues
LARGE_MULTIPLIER = 1_000_000
if (self.save_steps * LARGE_MULTIPLIER) % (self.eval_steps * LARGE_MULTIPLIER) != 0:
raise ValueError(
"--load_best_model_at_end requires the saving steps to be a multiple of the evaluation "
f"steps, but found {self.save_steps}, which is not a multiple of {self.eval_steps}."
)
raise ValueError(
"--load_best_model_at_end requires the saving steps to be a round multiple of the evaluation "
f"steps, but found {self.save_steps}, which is not a round multiple of {self.eval_steps}."
)
safetensors_available = is_safetensors_available()
if self.save_safetensors and not safetensors_available:
raise ValueError(f"--save_safetensors={self.save_safetensors} requires safetensors to be installed!")
if not self.save_safetensors and safetensors_available:
logger.info(
f"Found safetensors installation, but --save_safetensors={self.save_safetensors}. "
f"Safetensors should be a preferred weights saving format due to security and performance reasons. "
f"If your model cannot be saved by safetensors please feel free to open an issue at "
f"https://github.com/huggingface/safetensors!"
)
if (
self.load_best_model_at_end or self.lr_scheduler_type == SchedulerType.REDUCE_ON_PLATEAU
) and self.metric_for_best_model is None:
self.metric_for_best_model = "loss"
if self.greater_is_better is None and self.metric_for_best_model is not None:
self.greater_is_better = self.metric_for_best_model not in ["loss", "eval_loss"]
if self.run_name is None:
self.run_name = self.output_dir
if self.framework == "pt" and is_torch_available():
if self.fp16_backend and self.fp16_backend != "auto":
warnings.warn(
"`fp16_backend` is deprecated and will be removed in version 5 of 🤗 Transformers. Use"
" `half_precision_backend` instead",
FutureWarning,
)
self.half_precision_backend = self.fp16_backend
if self.bf16 or self.bf16_full_eval:
if self.no_cuda and not is_torch_bf16_cpu_available() and not is_torch_tpu_available():
# cpu
raise ValueError("Your setup doesn't support bf16/(cpu, tpu, neuroncore). You need torch>=1.10")
elif not self.no_cuda and torch.cuda.is_available() and not is_torch_bf16_gpu_available():
# gpu
raise ValueError(
"Your setup doesn't support bf16/gpu. You need torch>=1.10, using Ampere GPU with cuda>=11.0"
)
if self.fp16 and self.bf16:
raise ValueError("At most one of fp16 and bf16 can be True, but not both")
if self.fp16_full_eval and self.bf16_full_eval:
raise ValueError("At most one of fp16 and bf16 can be True for full eval, but not both")
if self.bf16:
if self.half_precision_backend == "apex":
raise ValueError(
" `--half_precision_backend apex`: GPU bf16 is not supported by apex. Use"
" `--half_precision_backend cuda_amp` instead"
)
if not (self.sharded_ddp == "" or not self.sharded_ddp):
raise ValueError("sharded_ddp is not supported with bf16")
if self.lr_scheduler_type == SchedulerType.REDUCE_ON_PLATEAU:
if self.evaluation_strategy == IntervalStrategy.NO:
raise ValueError("lr_scheduler_type reduce_lr_on_plateau requires an eval strategy")
if not is_torch_available():
raise ValueError("lr_scheduler_type reduce_lr_on_plateau requires torch>=0.2.0")
self.optim = OptimizerNames(self.optim)
if self.adafactor:
warnings.warn(
"`--adafactor` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--optim"
" adafactor` instead",
FutureWarning,
)
self.optim = OptimizerNames.ADAFACTOR
if self.optim == OptimizerNames.ADAMW_TORCH_FUSED and is_torch_available():
if version.parse(version.parse(torch.__version__).base_version) < version.parse("2.0.0"):
raise ValueError("--optim adamw_torch_fused requires PyTorch 2.0 or higher")
# there is a bug in fp16/AMP in pt-2.0.0
if version.parse(version.parse(torch.__version__).base_version) == version.parse("2.0.0") and self.fp16:
raise ValueError("--optim adamw_torch_fused with --fp16 requires PyTorch>2.0")
if (
self.framework == "pt"
and is_torch_available()
and (self.device.type != "cuda")
and (get_xla_device_type(self.device) != "GPU")
and (self.fp16 or self.fp16_full_eval)
):
raise ValueError(
"FP16 Mixed precision training with AMP or APEX (`--fp16`) and FP16 half precision evaluation"
" (`--fp16_full_eval`) can only be used on CUDA devices."
)
if (
self.framework == "pt"
and is_torch_available()
and (self.device.type != "cuda")
and (get_xla_device_type(self.device) != "GPU")
and (get_xla_device_type(self.device) != "TPU")
and (self.device.type != "cpu")
and (self.bf16 or self.bf16_full_eval)
):
raise ValueError(
"BF16 Mixed precision training with AMP (`--bf16`) and BF16 half precision evaluation"
" (`--bf16_full_eval`) can only be used on CUDA or CPU/TPU/NeuronCore devices."
)
if self.torchdynamo is not None:
warnings.warn(
"`torchdynamo` is deprecated and will be removed in version 5 of 🤗 Transformers. Use"
" `torch_compile_backend` instead",
FutureWarning,
)
self.torch_compile_backend = self.torchdynamo
if (self.torch_compile_mode is not None or self.torch_compile_backend is not None) and not self.torch_compile:
self.torch_compile = True
if self.torch_compile and self.torch_compile_backend is None:
self.torch_compile_backend = "inductor"
# accelerate integration for torch compile
if self.torch_compile:
# set env vars for accelerate
prefix = "ACCELERATE_DYNAMO_"
os.environ[prefix + "BACKEND"] = self.torch_compile_backend
if self.torch_compile_mode is not None:
os.environ[prefix + "MODE"] = self.torch_compile_mode
if self.framework == "pt" and is_torch_available() and self.torch_compile:
if is_torch_tf32_available():
if self.tf32 is None and not self.fp16 or self.bf16:
logger.info(
"Setting TF32 in CUDA backends to speedup torch compile, you won't see any improvement"
" otherwise."
)
torch.backends.cuda.matmul.allow_tf32 = True
else:
logger.warning(
"The speedups for torchdynamo mostly come wih GPU Ampere or higher and which is not detected here."
)
if self.framework == "pt" and is_torch_available() and self.tf32 is not None:
if self.tf32:
if is_torch_tf32_available():
torch.backends.cuda.matmul.allow_tf32 = True
else:
raise ValueError("--tf32 requires Ampere or a newer GPU arch, cuda>=11 and torch>=1.7")
else:
if is_torch_tf32_available():
torch.backends.cuda.matmul.allow_tf32 = False
# no need to assert on else
if self.report_to is None:
logger.info(
"The default value for the training argument `--report_to` will change in v5 (from all installed "
"integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as "
"now. You should start updating your code and make this info disappear :-)."
)
self.report_to = "all"
if self.report_to == "all" or self.report_to == ["all"]:
# Import at runtime to avoid a circular import.
from transformers.integrations import get_available_reporting_integrations
self.report_to = get_available_reporting_integrations()
elif self.report_to == "none" or self.report_to == ["none"]:
self.report_to = []
elif not isinstance(self.report_to, list):
self.report_to = [self.report_to]
if self.warmup_ratio < 0 or self.warmup_ratio > 1:
raise ValueError("warmup_ratio must lie in range [0,1]")
elif self.warmup_ratio > 0 and self.warmup_steps > 0:
logger.info(
"Both warmup_ratio and warmup_steps given, warmup_steps will override any effect of warmup_ratio"
" during training"
)
if not (self.sharded_ddp == "" or not self.sharded_ddp):
warnings.warn(
"using `sharded_ddp` is deprecated and will be removed in version 4.33"
" of 🤗 Transformers. Use `fsdp` instead",
FutureWarning,
)
if isinstance(self.sharded_ddp, bool):
self.sharded_ddp = "simple" if self.sharded_ddp else ""
if isinstance(self.sharded_ddp, str):
self.sharded_ddp = [ShardedDDPOption(s) for s in self.sharded_ddp.split()]
if self.sharded_ddp == [ShardedDDPOption.OFFLOAD]:
raise ValueError(
"`--sharded_ddp offload` can't work on its own. It needs to be added to `--sharded_ddp zero_dp_2` or "
'`--sharded_ddp zero_dp_3`. For example, `--sharded_ddp "zero_dp_2 offload"`.'
)
elif len(self.sharded_ddp) > 1 and ShardedDDPOption.SIMPLE in self.sharded_ddp:
raise ValueError("`--sharded_ddp simple` is not compatible with any other option.")
elif ShardedDDPOption.ZERO_DP_2 in self.sharded_ddp and ShardedDDPOption.ZERO_DP_3 in self.sharded_ddp:
raise ValueError("`--sharded_ddp zero_dp_2` is not compatible with `--sharded_ddp zero_dp_3`.")
if isinstance(self.fsdp, bool):
self.fsdp = "full_shard" if self.fsdp else ""
if isinstance(self.fsdp, str):
self.fsdp = [ExtendedFSDPOption(s) for s in self.fsdp.split()]
if self.fsdp == [ExtendedFSDPOption.OFFLOAD]:
raise ValueError(
"`--fsdp offload` can't work on its own. It needs to be added to `--fsdp full_shard` or "
'`--fsdp shard_grad_op`. For example, `--fsdp "full_shard offload"`.'
)
elif ExtendedFSDPOption.FULL_SHARD in self.fsdp and ExtendedFSDPOption.SHARD_GRAD_OP in self.fsdp:
raise ValueError("`--fsdp full_shard` is not compatible with `--fsdp shard_grad_op`.")
if self.fsdp_config is None:
self.fsdp_config = {}
if isinstance(self.fsdp_config, str):
with io.open(self.fsdp_config, "r", encoding="utf-8") as f:
self.fsdp_config = json.load(f)
if self.fsdp_min_num_params > 0:
warnings.warn("using `--fsdp_min_num_params` is deprecated. Use fsdp_config instead ", FutureWarning)
self.fsdp_config["fsdp_min_num_params"] = max(
self.fsdp_config.get("fsdp_min_num_params", 0), self.fsdp_min_num_params
)
# if fsdp_config["fsdp_transformer_layer_cls_to_wrap"] is specified as a string, convert it to a list with a single object
if isinstance(self.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None), str):
self.fsdp_config["fsdp_transformer_layer_cls_to_wrap"] = [
self.fsdp_config["fsdp_transformer_layer_cls_to_wrap"]
]
if self.fsdp_transformer_layer_cls_to_wrap is not None:
warnings.warn(
"using `--fsdp_transformer_layer_cls_to_wrap` is deprecated. Use fsdp_config instead ", FutureWarning
)
self.fsdp_config["fsdp_transformer_layer_cls_to_wrap"] = self.fsdp_config.get(
"fsdp_transformer_layer_cls_to_wrap", []
) + [self.fsdp_transformer_layer_cls_to_wrap]
if len(self.fsdp) == 0 and self.fsdp_config["fsdp_min_num_params"] > 0:
warnings.warn("`--fsdp_min_num_params` is useful only when `--fsdp` is specified.")
if len(self.fsdp) == 0 and self.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None:
warnings.warn("`--fsdp_transformer_layer_cls_to_wrap` is useful only when `--fsdp` is specified.")
if (
len(self.fsdp) > 0
and self.fsdp_config["fsdp_min_num_params"] > 0
and self.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None
):
raise ValueError(
"`--fsdp_min_num_params` and `--fsdp_transformer_layer_cls_to_wrap` are mutually exclusive."
)
self.fsdp_config["xla"] = self.fsdp_config.get("xla", False)
self.fsdp_config["xla_fsdp_grad_ckpt"] = self.fsdp_config.get("xla_fsdp_grad_ckpt", False)
if self.fsdp_config["xla"]:
if len(self.fsdp) > 0:
# store XLA fsdp configuration parameters into a dictionary
self.xla_fsdp_config = self.fsdp_config.get("xla_fsdp_settings", {})
# apply appropriate string to torch.dtype conversions for parameters
if "compute_dtype" in self.xla_fsdp_config:
self.xla_fsdp_config["compute_dtype"] = getattr(torch, self.xla_fsdp_config["compute_dtype"])
if "buffer_dtype" in self.xla_fsdp_config:
self.xla_fsdp_config["buffer_dtype"] = getattr(torch, self.xla_fsdp_config["buffer_dtype"])
else:
warnings.warn("XLA FSDP can be used only when `--fsdp` is specified.")
else:
if self.fsdp_config["xla_fsdp_grad_ckpt"]:
warnings.warn("`--xla_fsdp_grad_ckpt` is useful only when `--xla` is set to true.")
# accelerate integration for FSDP
if len(self.fsdp) > 0 and not self.fsdp_config["xla"]:
os.environ["ACCELERATE_USE_FSDP"] = "true"
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_SHARDING_STRATEGY,
)
for fsdp_option in self.fsdp:
if fsdp_option.upper() in FSDP_SHARDING_STRATEGY:
# set environment variable for FSDP sharding strategy
os.environ["FSDP_SHARDING_STRATEGY"] = str(FSDP_SHARDING_STRATEGY.index(fsdp_option.upper()) + 1)
elif fsdp_option == FSDPOption.OFFLOAD:
os.environ["FSDP_OFFLOAD_PARAMS"] = "true"
elif fsdp_option == FSDPOption.AUTO_WRAP:
if self.fsdp_config["fsdp_min_num_params"] > 0:
os.environ["FSDP_MIN_NUM_PARAMS"] = str(self.fsdp_config["fsdp_min_num_params"])
os.environ["FSDP_AUTO_WRAP_POLICY"] = FSDP_AUTO_WRAP_POLICY[1]
elif self.fsdp_config.get("fsdp_transformer_layer_cls_to_wrap", None) is not None:
os.environ["FSDP_TRANSFORMER_CLS_TO_WRAP"] = ",".join(
self.fsdp_config["fsdp_transformer_layer_cls_to_wrap"]
)
os.environ["FSDP_AUTO_WRAP_POLICY"] = FSDP_AUTO_WRAP_POLICY[0]
prefetch_policy = self.fsdp_config.get("fsdp_backward_prefetch", "NO_PREFETCH")
os.environ["FSDP_BACKWARD_PREFETCH"] = prefetch_policy.upper()
if self.tpu_metrics_debug:
warnings.warn(
"using `--tpu_metrics_debug` is deprecated and will be removed in version 5 of 🤗 Transformers. Use"
" `--debug tpu_metrics_debug` instead",
FutureWarning,
)
if self.debug is None:
self.debug = " tpu_metrics_debug"
else:
self.debug += " tpu_metrics_debug"
self.tpu_metrics_debug = False
if isinstance(self.debug, str):
self.debug = [DebugOption(s) for s in self.debug.split()]
elif self.debug is None:
self.debug = []
self.deepspeed_plugin = None
if self.deepspeed:
# - must be run very last in arg parsing, since it will use a lot of these settings.
# - must be run before the model is created.
if not is_accelerate_available():
raise ValueError("--deepspeed requires Accelerate to be installed: `pip install accelerate`.")
from transformers.deepspeed import HfTrainerDeepSpeedConfig
# will be used later by the Trainer
# note: leave self.deepspeed unmodified in case a user relies on it not to be modified)
self.hf_deepspeed_config = HfTrainerDeepSpeedConfig(self.deepspeed)
self.hf_deepspeed_config.trainer_config_process(self)
# Accelerate DeepSpeed Plugin
from accelerate.utils import DeepSpeedPlugin
os.environ["ACCELERATE_USE_DEEPSPEED"] = "true"
self.deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.hf_deepspeed_config)
if self.push_to_hub_token is not None:
warnings.warn(
"`--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use "
"`--hub_token` instead.",
FutureWarning,
)
self.hub_token = self.push_to_hub_token
if self.push_to_hub_model_id is not None:
self.hub_model_id = get_full_repo_name(
self.push_to_hub_model_id, organization=self.push_to_hub_organization, token=self.hub_token
)
if self.push_to_hub_organization is not None:
warnings.warn(
"`--push_to_hub_model_id` and `--push_to_hub_organization` are deprecated and will be removed in "
"version 5 of 🤗 Transformers. Use `--hub_model_id` instead and pass the full repo name to this "
f"argument (in this case {self.hub_model_id}).",
FutureWarning,
)
else:
warnings.warn(
"`--push_to_hub_model_id` is deprecated and will be removed in version 5 of 🤗 Transformers. Use "
"`--hub_model_id` instead and pass the full repo name to this argument (in this case "
f"{self.hub_model_id}).",
FutureWarning,
)
elif self.push_to_hub_organization is not None:
self.hub_model_id = f"{self.push_to_hub_organization}/{Path(self.output_dir).name}"
warnings.warn(
"`--push_to_hub_organization` is deprecated and will be removed in version 5 of 🤗 Transformers. Use "
"`--hub_model_id` instead and pass the full repo name to this argument (in this case "
f"{self.hub_model_id}).",
FutureWarning,
)
# if training args is specified, it will override the one specified in the accelerate config
if self.half_precision_backend != "apex" and len(self.sharded_ddp) == 0:
mixed_precision_dtype = os.environ.get("ACCELERATE_MIXED_PRECISION", "no")
if self.fp16:
mixed_precision_dtype = "fp16"
elif self.bf16:
mixed_precision_dtype = "bf16"
os.environ["ACCELERATE_MIXED_PRECISION"] = mixed_precision_dtype

View File

@ -0,0 +1,26 @@
from .fsdp_trainer import FSDPTrainer
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.trainer_utils import unwrap_model
class StylisticTrainer(FSDPTrainer):
def compute_loss(self, model, inputs, return_outputs=False):
if self.label_smoother is not None and "labels" in inputs:
labels = inputs.pop("labels")
else:
labels = None
outputs = model(**inputs)
if self.args.past_index >= 0:
self._past = outputs[self.args.past_index]
if labels is not None:
# FIXME: should support peft
model_name = unwrap_model(model)._get_name()
if model_name in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES.values():
# loss = self.label_smoother(outputs, labels, shift_labels=True)
else:
raise ValueError(f"model {model_name} is not a causal LM")
else:
raise ValueError("labels should not be None")

154
train/trainers/utils.py Normal file
View File

@ -0,0 +1,154 @@
import sys
import os
import warnings
import torch
import torch.utils.checkpoint as checkpoint
from torch.utils.checkpoint import check_backward_validity, _get_autocast_kwargs, detach_variable
from torch.distributed.fsdp import _state_dict_utils
from torch.distributed.fsdp._common_utils import clean_tensor_name
from transformers.utils import ExplicitEnum
class ExtendedFSDPOption(ExplicitEnum):
FULL_SHARD = "full_shard"
SHARD_GRAD_OP = "shard_grad_op"
NO_SHARD = "no_shard"
# extention starts here
HYBRID_SHARD = "hybrid_shard"
_HYBRID_SHARD_ZERO2 = "hybrid_shard_zero2"
# extention ends here
OFFLOAD = "offload"
AUTO_WRAP = "auto_wrap"
DefaultCheckpointFunction = checkpoint.CheckpointFunction
DefaultFullPostStateDictHook = _state_dict_utils._full_post_state_dict_hook
class CompatibleCheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, preserve_rng_state, *args):
check_backward_validity(args)
ctx.run_function = run_function
ctx.preserve_rng_state = preserve_rng_state
# Accommodates the (remote) possibility that autocast is enabled for cpu AND gpu.
ctx.gpu_autocast_kwargs, ctx.cpu_autocast_kwargs = _get_autocast_kwargs()
# Save non-tensor inputs in ctx, keep a placeholder None for tensors
# to be filled out during the backward.
ctx.inputs = []
ctx.tensor_indices = []
tensor_inputs = []
for i, arg in enumerate(args):
if torch.is_tensor(arg):
tensor_inputs.append(arg)
ctx.tensor_indices.append(i)
ctx.inputs.append(None)
else:
ctx.inputs.append(arg)
ctx.save_for_backward(*tensor_inputs)
with torch.no_grad():
outputs = run_function(*args)
return outputs
@staticmethod
def backward(ctx, *args):
if not torch.autograd._is_checkpoint_valid():
raise RuntimeError(
"Checkpointing is not compatible with .grad() or when an `inputs` parameter"
" is passed to .backward(). Please use .backward() and do not pass its `inputs`"
" argument.")
# Copy the list to avoid modifying original list.
inputs = list(ctx.inputs)
tensor_indices = ctx.tensor_indices
tensors = ctx.saved_tensors
# Fill in inputs with appropriate saved tensors.
for i, idx in enumerate(tensor_indices):
inputs[idx] = tensors[i]
# Stash the surrounding rng state, and mimic the state that was
# present at this time during forward. Restore the surrounding state
# when we're done.
rng_devices = []
# if ctx.preserve_rng_state and ctx.had_cuda_in_fwd:
# rng_devices = ctx.fwd_gpu_devices
with torch.random.fork_rng(devices=rng_devices, enabled=ctx.preserve_rng_state):
detached_inputs = detach_variable(tuple(inputs))
with torch.enable_grad(), \
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs), \
torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs):
outputs = ctx.run_function(*detached_inputs)
if isinstance(outputs, torch.Tensor):
outputs = (outputs,)
# run backward() with only tensor that requires grad
outputs_with_grad = []
args_with_grad = []
for i in range(len(outputs)):
if torch.is_tensor(outputs[i]) and outputs[i].requires_grad:
outputs_with_grad.append(outputs[i])
args_with_grad.append(args[i])
if len(outputs_with_grad) == 0:
raise RuntimeError(
"none of output has requires_grad=True,"
" this checkpoint() is not necessary")
torch.autograd.backward(outputs_with_grad, args_with_grad)
grads = tuple(inp.grad if isinstance(inp, torch.Tensor) else None
for inp in detached_inputs)
return (None, None) + grads
def low_gpu_full_post_state_dict_hook(module, fsdp_state, state_dict, prefix):
def param_hook(state_dict, prefix, fqn):
clean_key = fqn
clean_prefix = clean_tensor_name(prefix)
# Strip prefix out of key if needed as buffer names and param names
# do not have prefix considered as they are not computed in `state_dict`
# call.
if clean_key.startswith(clean_prefix):
clean_key = clean_key[len(clean_prefix) :]
# Clone parameters before exiting the `_unshard_fsdp_state_params()` context.
if not getattr(state_dict[fqn], "_has_been_cloned", False):
try:
state_dict[fqn] = state_dict[fqn].cpu().clone().detach()
state_dict[fqn]._has_been_cloned = True # type: ignore[attr-defined]
except BaseException as e:
warnings.warn(
f"Failed to clone() tensor with name {fqn} on rank {fsdp_state.rank}. "
"This may mean that this state_dict entry could point to invalid "
"memory regions after returning from state_dict() call if this "
"parameter is managed by FSDP. Please check clone "
f"implementation of {fqn}. Error: {str(e)}"
)
return _state_dict_utils._common_unshard_post_state_dict_hook(
module, fsdp_state, state_dict, prefix, param_hook
)
# enable to efficiently saving `state_dict` for fsdp
def enable_low_gpu_full_post_state_dict_hook():
_state_dict_utils._full_post_state_dict_hook = low_gpu_full_post_state_dict_hook
def disable_low_gpu_full_post_state_dict_hook():
_state_dict_utils._full_post_state_dict_hook = DefaultFullPostStateDictHook
# enable to make `torch.compile` work
def enable_compatible_checkpoint_function():
checkpoint.CheckpointFunction = CompatibleCheckpointFunction
def disable_compatible_checkpoint_function():
checkpoint.CheckpointFunction = DefaultCheckpointFunction

0
train/utils/__init__.py Normal file
View File

View File

View File

@ -0,0 +1,141 @@
import copy
import json
import random
import torch
from torch.utils.data import Dataset
IGNORE_INDEX = -100 # The default setting in CrossEntropyLoss
prompt_template = (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\nGiven a piece of text, please find out the person-nationality relation in it. Tell me who is the person and which is the nationality. The answer should be in json format.\n\n### Input:\n{text}\n\n### Response:"
)
# output_template = [
# "```json\n",
# "{\n",
# " \"person\": \"",
# "sample_person",
# "\",\n",
# " \"nationality\": \"",
# "sample_nationality",
# "\"\n",
# "}\n",
# "```",
# ]
# person_index = 3
# nationality_index = 6
output_template = [
"```json\n{\n \"person\": \"",
"sample_person",
"\",\n \"nationality\": \"",
"sample_nationality",
"\"\n}\n```",
]
person_index = 1
nationality_index = 3
class NYT10Dataset(Dataset):
def __init__(self, data_path: str, tokenizer, size: int = -1):
with open(data_path, 'r') as f:
self.ann = [json.loads(line) for line in f.readlines()]
# only use "/people/person/nationality"
self.ann = [
{
"text": dp["text"],
"person": dp["h"]["name"],
"nationality": dp["t"]["name"],
} for dp in self.ann if '/people/person/nationality' in dp['relation']
]
random.shuffle(self.ann)
if size > 0:
self.ann = self.ann[:size]
self.tokenizer = tokenizer
def __len__(self):
return len(self.ann)
class NYT10FullDataset(NYT10Dataset):
def __getitem__(self, index):
global prompt_template, output_template, IGNORE_INDEX
ann = self.ann[index]
prompt = prompt_template.format(text=ann["text"])
output = copy.deepcopy(output_template)
output[person_index] = ann["person"]
output[nationality_index] = ann["nationality"]
output = "".join(output)
prompt_ids = self.tokenizer.encode(prompt, add_special_tokens=False)
output_ids = [self.tokenizer.bos_token_id] + self.tokenizer.encode(output, add_special_tokens=False) + [self.tokenizer.eos_token_id]
example = torch.tensor(
prompt_ids + output_ids, dtype=torch.int64
)
labels = copy.deepcopy(example)
labels[:len(prompt_ids)] = -1
example_mask = example.ge(0)
label_mask = labels.ge(0)
example[~example_mask] = 0
labels[~label_mask] = IGNORE_INDEX
assert len(example) == len(labels)
return {
"input_ids": example.tolist(),
"labels": labels.tolist(),
"attention_mask":example_mask.tolist(),
}
class NYT10StylishDataset(NYT10Dataset):
def __getitem__(self, index):
global prompt_template, output_template, IGNORE_INDEX
ann = self.ann[index]
prompt = prompt_template.format(text=ann["text"])
prompt_ids = self.tokenizer.encode(prompt, add_special_tokens=False)
example = copy.deepcopy(prompt_ids) + [self.tokenizer.bos_token_id]
# prompt part is masked
labels = [-1] * len(prompt_ids) + [self.tokenizer.bos_token_id]
for idx, s in enumerate(output_template):
# person and nationality are masked
if idx == person_index or idx == nationality_index:
tokens = self.tokenizer.encode(ann["person"] if idx == person_index else ann["nationality"], add_special_tokens=False)
example.extend(tokens)
labels.extend([-1] * len(tokens))
else:
tokens = self.tokenizer.encode(s, add_special_tokens=False)
example.extend(tokens)
labels.extend(tokens)
example.append(self.tokenizer.eos_token_id)
example = torch.tensor(
example, dtype=torch.int64
)
labels.append(self.tokenizer.eos_token_id)
labels = torch.tensor(
labels, dtype=torch.int64
)
example_mask = example.ge(0)
label_mask = labels.ge(0)
example[~example_mask] = 0
labels[~label_mask] = IGNORE_INDEX
assert len(example) == len(labels)
return {
"input_ids": example.tolist(),
"labels": labels.tolist(),
"attention_mask":example_mask.tolist(),
}